OCR Further Pure 1
 Complex Numbers

Section 2: Equations and geometrical representation

 Multiple Choice TestQuestions 1 and 2 refer to the Argand diagram below.

1) In the Argand diagram, the point A represents the complex number
(a) $-3+2 \mathrm{i}$
(b) $3-2 \mathrm{i}$
(c) $2-3 \mathrm{i}$
(d) $-2+3 i$
(e) I don't know
2) In the Argand diagram, the point B represents the complex number
(a) $-4-\mathrm{i}$
(b) $-1-4 \mathrm{i}$
(c) $1+4 i$
(d) $4+\mathrm{i}$
(e) I don't know

Questions 3-4 refer to the Argand diagram below. The point representing the complex number z is shown on the diagram.

© MEI, 22/02/06

OCR Further Pure 1

3) The point which represents z^{*} is
(a) T
(b) R
(c) Q
(d) V
(e) I don't know
4) The point which represents iz is
(a) P
(b) S
(c) U
(d) Q
(e) I don’t know
5) $2+i$ is a root of $z^{3}-z^{2}-7 z+15=0$. The other roots are
(a) $2+\mathrm{i}, 3$
(b) $2-\mathrm{i}, 3$
(c) $2-\mathrm{i},-3$
(d) $2+\mathrm{i}, 2-\mathrm{i}$
(e) I don't know
6) The real root of $z^{3}-4 z^{2}+14 z-20=0$ is 2 . The other roots are
(a) $-1+3 \mathrm{i},-1-3 \mathrm{i}$
(b) $1+3 \mathrm{i}, 1-3 \mathrm{i}$
(c) $2+3 \mathrm{i}, 2-3 \mathrm{i}$
(d) $-2+3 \mathrm{i},-2-3 \mathrm{i}$
(e) I don't know
7) $1+2 \mathrm{i}$ is a root of the cubic equation $z^{3}+a z^{2}+b z+5=0$. The values of a and b are
(a) $a=-1, b=3$
(b) $a=1, b=-1$
(c) $a=1, b=3$
(d) $a=-1, b=-1$
(e) I don’t know
8) $-2+\mathrm{i}$ is a root of the equation $z^{4}+2 z^{3}-z^{2}-2 z+10=0$.

The other roots are
(a) $-2-\mathrm{i}, 1+2 \mathrm{i}, 1-2 \mathrm{i}$
(b) $2-\mathrm{i}, 1+\mathrm{i}, 1-\mathrm{i}$
(c) $-2-\mathrm{i}, 2-\mathrm{i}, 2+\mathrm{i}$
(d) $-2-\mathrm{i}, 1+\mathrm{i}, 1-\mathrm{i}$
(e) I don't know

OCR Further Pure 1

9) The equation $z^{4}+z^{3}+2 z^{2}+4 z-8=0$ has two real roots. The roots of the equation are
(a) $-1,2,1+\mathrm{i}, 1-\mathrm{i}$
(b) $1,-2,2 \mathrm{i},-2 \mathrm{i}$
(c) $1,-2,1+\mathrm{i}, 1-\mathrm{i}$
(d) $-1,2,2 \mathrm{i},-2 \mathrm{i}$
(e) I don't know
10) The square roots of the complex number $5+12 i$ are
(a) $2+3 i$ and $-2-3 i$
(b) $3-2 \mathrm{i}$ and $-3+2 \mathrm{i}$
(c) $3+2 \mathrm{i}$ and $-3-2 \mathrm{i}$
(d) $2-3 i$ and $-2+3 i$
(e) I don't know

OCR Further Pure 1

Solutions to Multiple Choice Test

1) The correct answer is a)
A is the point $(-3,2)$.
This represents the complex number $-3+2 i$.
2) The correct answer is b)
B is the point $(-1,-4)$.
This represents the complex number $-1-4 i$.
3) The correct answer is d)

If $z=x+i y$, then $z^{*}=x-i y$.
so the point which represents z^{*} is the reflection of the point which represents z in the x-axis.
This is point V.
4) The correct answer is c)

If $z=x+i y$, then $i z=i x-y=-y+i x$.
The point which represents iz has x-coordinate equal to the y-coordinate of z, but with opposite sign, and y-coordinate equal to the x-coordinate of z.
This is point u.
5) The correct answer is c)

Since $2+i$ is a root, 2 -i is also a root.
So $(z-2-i)(z-2+i)$ is a factor of the equation.
$(z-2-i)(z-2+i)=(z-2)^{2}+1$

$$
=z^{2}-4 z+5
$$

So $z^{3}-z^{2}-7 z+15=\left(z^{2}-4 z+5\right)(z+3)$
so the third root is -3 .
The other two roots are $2-i$ and -3 .

OCR Further Pure 1

6) The correct answer is b)

2 is a root of the equation, so $z-2$ is a factor.
$z^{3}-4 z^{2}+14 z-20=0$
$(z-2)\left(z^{2}-2 z+10\right)=0$
The other two roots are the roots of the quadratic equation $z^{2}-2 z+10=0$

$$
\begin{aligned}
z & =\frac{2 \pm \sqrt{4-4 \times 1 \times 10}}{2} \\
& =\frac{2 \pm \sqrt{-36}}{2} \\
& =\frac{2 \pm 6 i}{2} \\
& =1 \pm 3 i
\end{aligned}
$$

7) The correct answer is a)
$(1+2 i)^{2}=1+4 i-4=-3+4 i$
$(1+2 i)^{3}=(-3+4 i)(1+2 i)=-3-2 i-8=-11-2 i$
Substituting into $z^{3}+a z^{2}+b z+5=0$:

$$
-11-2 i+a(-3+4 i)+b(1+2 i)+5=0
$$

Equating real parts: $-11-3 a+b+5=0 \Rightarrow 3 a-b=-6$
Equating imaginary parts: $-2+4 a+2 b=0 \Rightarrow 2 a+b=1$
Adding: $5 a=-5 \Rightarrow a=-1, \quad b=3$
8) The correct answer is d)
$-2+i$ is a root, so -2 - i is a root
so $(z+2-i)(z+2+i)$ is a factor.
$(z+2-i)(z+2+i)=(z+2)^{2}+1$
$=z^{2}+4 z+5$
$z^{4}+2 z^{3}-z^{2}-2 z+10=\left(z^{2}+4 z+5\right)\left(z^{2}-2 z+2\right)$
The other two roots are the roots of the quadratic equation $z^{2}-2 z+2=0$.

$$
\begin{aligned}
z & =\frac{2 \pm \sqrt{4-4 \times 1 \times 1}}{2} \\
& =\frac{2 \pm \sqrt{-4}}{2} \\
& =\frac{2 \pm 2 i}{2} \\
& =1 \pm i
\end{aligned}
$$

The other roots are $-2-i, 1+i$ and $1-i$.

OCR Further Pure 1

9) The correct answer is b)

$$
\begin{aligned}
& f(z)=z^{4}+z^{3}+2 z^{2}+4 z-8 \\
& f(1)=1+1+2+4-8=0 \\
& f(-2)=16-8+8-8-8=0 \\
& \text { so }(z-1) \text { and }(z+2) \text { are factors. } \\
& (z-1)(z+2)=z^{2}+z-2 \\
& z^{4}+z^{3}+2 z^{2}+4 z-8=\left(z^{2}+z-2\right)\left(z^{2}+4\right)
\end{aligned}
$$

$$
\text { The roots of } z^{2}+4=0 \text { are } 2 i \text { and }-2 i \text {. }
$$

So the roots of the equation are $1,-2,2 i$ and $-2 i$.
10) The correct answer is c)
$(a+b i)^{2}=5+12 i$
$a^{2}+2 a b i-b^{2}=5+12 i$
Equating real parts: $a^{2}-b^{2}=5$
Equating imaginary parts: $\quad 2 a b=12 \Rightarrow a=\frac{6}{b}$
Substituting: $\frac{36}{b^{2}}-b^{2}=5$

$$
\begin{aligned}
& 36-b^{4}=5 b^{2} \\
& b^{4}+5 b^{2}-36=0 \\
& \left(b^{2}+9\right)\left(b^{2}-4\right)=0 \\
& b= \pm 2
\end{aligned}
$$

When $b=2, a=3$
When $b=-2, a=-3$
The square roots of $5+12 i$ are $3+2 i$ and $-3-2 i$.

