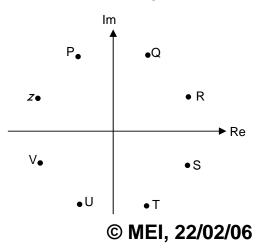

Complex Numbers

Section 2: Equations and geometrical representation

Multiple Choice Test

Questions 1 and 2 refer to the Argand diagram below.


1) In the Argand diagram, the point A represents the complex number

(a) $-3 + 2i$ (c) $2 - 3i$	(b) 3 – 2i
(c) $2 - 3i$	(d) -2 + 3i
(e) I don't know	

2) In the Argand diagram, the point B represents the complex number

(a) - 4 - i	(b)-1 - 4i
(c) $1 + 4i$	(d) 4 + i
(e) I don't know	

Questions 3 - 4 refer to the Argand diagram below. The point representing the complex number *z* is shown on the diagram.

3) The point which represents z^* is	
 (a) T (c) Q (e) I don't know 	(b) R (d) V
4) The point which represents iz is	

(a) P	(b) S
(c) U	(d) Q
(e) I don't know	

5) 2 + i is a root of $z^3 - z^2 - 7z + 15 = 0$. The other roots are

(a) $2 + i$, 3	(b) 2 – i, 3
(c) $2 - i, -3$	(d) $2 + i$, $2 - i$
(e) I don't know	

6) The real root of $z^3 - 4z^2 + 14z - 20 = 0$ is 2. The other roots are

(a) - 1 + 3i, -1 - 3i	(b) 1 + 3i, 1 − 3i
(c) $2 + 3i$, $2 - 3i$	(d) -2 + 3i, -2 - 3i
(e) I don't know	

7) 1 + 2i is a root of the cubic equation $z^3 + az^2 + bz + 5 = 0$. The values of *a* and *b* are

(a) $a = -1, b = 3$	(b) $a = 1, b = -1$
(c) $a = 1, b = 3$	(d) $a = -1, b = -1$
(e) I don't know	

8) -2 + i is a root of the equation $z^4 + 2z^3 - z^2 - 2z + 10 = 0$. The other roots are

(a) $-2 - i$, $1 + 2i$, $1 - 2i$	(b) $2 - i$, $1 + i$, $1 - i$
(c) -2 - i, 2 - i, 2 + i	(d)-2-i, 1+i, 1-i
(e) I don't know	

9) The equation $z^4 + z^3 + 2z^2 + 4z - 8 = 0$ has two real roots. The roots of the equation are

(a) −1, 2, 1 + i, 1 − i	(b) 1, -2, 2i, -2i
(c) 1, −2, 1 + i, 1 − i	(d) –1, 2, 2i, –2i
(e) I don't know	

10) The square roots of the complex number 5 + 12i are

(a) $2 + 3i$ and $-2 - 3i$	(b) $3 - 2i$ and $-3 + 2i$
(c) $3 + 2i$ and $-3 - 2i$	(d) $2 - 3i$ and $-2 + 3i$
(e) I don't know	

Solutions to Multiple Choice Test

1) The correct answer is a)

A is the point (-3, 2). This represents the complex number -3 + 2i.

2) The correct answer is b)

B is the point (-1, -4). This represents the complex number -1 – 4i.

з) The correct answer is d)

If z = x + iy, then $z^* = x - iy$. So the point which represents z^* is the reflection of the point which represents z in the x-axis. This is point \vee .

4) The correct answer is c)

If z = x + iy, then iz = ix - y = -y + ix. The point which represents iz has x-coordinate equal to the y-coordinate of z, but with opposite sign, and y-coordinate equal to the x-coordinate of z. This is point u.

5) The correct answer is c)

Sínce 2 + í ís a root, 2 − í ís also a root. So (z − 2 − í) (z − 2 + í) ís a factor of the equation. (z − 2 − í) (z − 2 + í) = (z − 2)² + 1

 $= z^{2} - 4z + 5$ So $z^{3} - z^{2} - 7z + 15 = (z^{2} - 4z + 5)(z + 3)$ So the third root is -3. The other two roots are 2 - i and -3.

6) The correct answer is b)

2 is a root of the equation, so z - 2 is a factor.

 $z^{3} - 4z^{2} + 14z - 20 = 0$ $(z - 2) (z^{2} - 2z + 10) = 0$

The other two roots are the roots of the quadratic equation $z^2 - 2z + 10 = 0$

$$z = \frac{2 \pm \sqrt{4 - 4 \times 1 \times 10}}{2}$$
$$= \frac{2 \pm \sqrt{-36}}{2}$$
$$= \frac{2 \pm 6i}{2}$$
$$= 1 \pm 3i$$

F) The correct answer is a)

 $(1+2i)^{2} = 1 + 4i - 4 = -3 + 4i$ $(1+2i)^{3} = (-3+4i)(1+2i) = -3 - 2i - 8 = -11 - 2i$ Substituting into $z^{3} + az^{2} + bz + 5 = 0$: -11 - 2i + a(-3+4i) + b(1+2i) + 5 = 0Equating real parts: $-11 - 3a + b + 5 = 0 \Rightarrow 3a - b = -6$ Equating imaginary parts: $-2 + 4a + 2b = 0 \Rightarrow 2a + b = 1$ Adding: $5a = -5 \Rightarrow a = -1$, b = 3

8) The correct answer is d)

-2 + *i* is a root, so -2 - *i* is a root so (z + 2 - i)(z + 2 + i) is a factor. $(z + 2 - i)(z + 2 + i) = (z + 2)^2 + 1$

 $= z^{2} + 4z + 5$

 $z^{4} + 2z^{3} - z^{2} - 2z + 10 = (z^{2} + 4z + 5)(z^{2} - 2z + 2)$

The other two roots are the roots of the quadratic equation $z^2 - 2z + 2 = 0$.

$$Z = \frac{2 \pm \sqrt{4 - 4 \times 1 \times 1}}{2}$$
$$= \frac{2 \pm \sqrt{-4}}{2}$$
$$= \frac{2 \pm 2i}{2}$$
$$= 1 \pm i$$

The other roots are -2 - i, 1 + i and 1 - i.

9)	The correct answer is k))
9)	The correct unswer is t	J

 $f(z) = z^{4} + z^{3} + 2z^{2} + 4z - 8$ f(1) = 1 + 1 + 2 + 4 - 8 = 0 f(-2) = 16 - 8 + 8 - 8 - 8 = 0so (z - 1) and (z + 2) are factors. $(z - 1)(z + 2) = z^{2} + z - 2$ $z^{4} + z^{3} + 2z^{2} + 4z - 8 = (z^{2} + z - 2)(z^{2} + 4)$ The roots of $z^{2} + 4 = 0$ are 2*i* and -2*i*. So the roots of the equation are 1, -2, 2*i* and -2*i*.

10) The correct answer is c)

$$(a + bi)^{2} = 5 + 12i$$

$$a^{2} + 2abi - b^{2} = 5 + 12i$$
Equating real parts: $a^{2} - b^{2} = 5$
Equating imaginary parts: $2ab = 12 \Rightarrow a = \frac{6}{b}$
Substituting: $\frac{36}{b^{2}} - b^{2} = 5$

$$36 - b^{4} = 5b^{2}$$

$$b^{4} + 5b^{2} - 36 = 0$$

$$(b^{2} + 9)(b^{2} - 4) = 0$$

$$b = \pm 2$$
When $b = 2, a = 3$
When $b = -2, a = -3$
The square roots of $5 + 12i$ are $3 + 2i$ and $-3 - 2i$.